
	Contents		100
1.	Properties of ZEDEX 100	page 3	ZEDEX 100
1.2	Comparision of sliding friction materials	page 4	H
2.	Delivery program: sliding fricions used for molding machines	page 5	Ē
3.	Test of new guide materials for ram guides installed in molding machines	page 6	
3.1	Reprint	page 7-14	
3.2	Results of the practice test	page 15-16	Range
4.	Construction instructions	page 17	aŭ
4.1 4.1.1	Static stability Short-term static stability in case of fatigue stress	page 17	Ř
4.1.1	Behaviour when exposed to edge pressure (tipping the ram in case of off-center stress)	page 17) page 17	
4.1.2	Long-term static stability in case of static stress (creep strength)	page 18	
4.2	Dynamic stability	page 19	Research
4.3	Friction and lubrication	page 19	ar I
4.3.1	Dry run	page 19-20	SS SS
4.3.2	Lubrication	page 21	۲ ۳
4.3.3	Design of lubricating grooves	page 21	
4.3.4	Damping	page 21-22	Construction
4.4	Wear and shrinking properties	page 23	cti
4.4.1	Lubricated sliding frictions	page 23	tr
4.4.2 4.5	Sliding partner	page 24	Suc
4.5 4.5.1	Accuracy and guide clearance Dimensional stability	page 24 page 24	ပိ
4.5.2	Moisture absorption	page 24	
4.5.3	Resistance to coolants	page 24	
4.5.4	Resistance to oil	page 24	Sheets
4.6	Behaviour when exposed to environmental influences	page 25	pe L
4.6.1	Exposure to heat	page 25	S
4.6.2	Exposure to temperature fluctuations	page 25	
4.6.3	Exposure to dirt	page 25	
4.6.4	Exposure to ultra-violet radiation	page 26	Slideways coatings
4.6.5	Exposure to hot water	page 26	ting
4.6.6 4.7	Exposure to chemicals Physiological compatibility of ZEDEX 100 A / K / MT	page 27-29	oat
4.7	Fastening of bearing elements made from ZEDEX 100 A7 K7 M1	page 30 page 31	S S
4.8.1	Instructions for the bonding technology recommended at ambient temperatures > 10°C		
4.8.2	Instructions for the bonding technology recommended at ambient temperatures < 0°C	nage 37-/11	
4.9	Machining of ZEDEXA/K/MT	page 42-45	bus
4.9.1	Machines	page 42	Sliding frictions
4.9.2	Tools	page 42	fri SI
4.9.3	Guidelines for the tool selection	page 42	
4.9.4	Clamping	page 42	
4.9.5	Dimensional stability	page 42	site
4.9.6 4.9.7	Disposal of stresses Annealing	page 42	SOS
4.9.7	Sawing	page 43 page 43	mpos gibs
4.9.9	Cutting	page 43	Composite gibs
4.9.10	Filing, grating, scraping	page 43	Ŭ
4.9.11	Drilling	page 43	
4.9.12	Milling	page 43	ist
4.9.13	Turning	page 43	<u>e</u>
4.9.14	•	page 44	Price list
4.9.15	Thread production	page 44	
4.9.16	Grinding, polishing	page 44	4- >
4.9.17 5	Knurling Shoota (aut blanka) mada from ZEDEX 100	page 44	Conditions of sale & supply
5. 6.	Sheets (cut blanks) made from ZEDEX 100 Slideways coatings made from ZEDEX 100	page 46	löä
6. 7.	Slideways coatings made from ZEDEX 100 Sliding frictions according to customers drawing	page 47 page 48	S siti
7. 8.	Composite gibs made from ZEDEX 100/steel	page 40 page 49	<u><u> </u></u>
9.	Price list for semi-finished products	page 50	sa Sa
10.	Conditions of sale and supply	page 51	
			2
Enclos			
	Enquiry form for sheet-slideways coating blanks	GF V9_E 12/2004	

ZEDEX 100 1.Properties of ZEDEX 100 ZEDEX 100 is a high-quality plastic alloy on a thermoplastic basis showing excellent tribological properties in dry runs. ZEDEX 100 is so successfully employed in different application cases especially due to the fact that the combination of it s excellent properties makes it an 'allround material' (see chart page 4). This material had been developped more than 25 years ago and is still state-of-the-art technology. There is a very high knowledge about the technical properties and application possibilities, so that costly Range tests are very often superfluous for a succesfull employment of the material. In principle, three different compositions are available: - ZEDEX 100 A for highest strength, high elasticity and low price - ZEDEX 100 K for highest mechanical stress - ZEDEX 100 MT for injection molding and higher heat resistance Research Semi-finished products made from ZEDEX 100 are always supplied in the configuration 'K'. table 1 Construction DIN/VDE ISO/IEC ASTM UNIT ZX-100A ZX-100K ZX-100MT Density 53479 1183 D 792 kg/dm³ 1.3 1.35 1.75 MPa Modulus in tension 53457 R527 D638-1 2200 2500 5000 53455 R527 D638-1 MPa 50 65 72.4 Tensile strength Ultimate tensile strength 53455 R527 D638-1 MPa 46.7 53455 R527 D638-1 MPa 50 72 5 Yield stress 53455 R527 D638-1 36 Elongation at break % 330 60 Sheets 53455 R527 D638-1 Elongation at yield stress % 3.6 178 D790 2000 2400 Flexural modulus 53454 MPa 2080 70 Flexural strength 53452 178 D790 85 85 Elongation at flexural strain 53452 % 5.0 53454 D695 MPa 74 77 Compressive yield stress 82,5 53444 110 Stress at 1% deformation MPa Slideways R179 no breakage no breakage coatings Impact resistance Charpy 53453 J/m² no breakage R179 2000 Notched impact test Charpy 53453 J/m² 16400 6000 R180/1A 11000 4000 800 Notched impact test IZOD J/m² Ball indentation hardness H358/30 53456 MPa 92 136 153 220 Ball indentation hardness H961/30 53456 MPa D785 110 50 Rockwell hardness Skala M 53505 R868 Shore-A hardness 97 R868 Shore-D hardness 53505 74 70 D570 Moisture absorption 24h in water at 20°C 53495 R62 % 0.35 0.3 0.2 Moisture absorption at saturation / 65% relative humidity 53495 R62 D570 % 0.75 0.7 0.5 Melting point 53738 °C. 255 255 255 Glass transition temperature 73 D696 K •10⁻⁵ Coefficient of thermal expansion 53752 8 7 5.5 Composite Heat distortion temperature (1,8MPa) 53461 75 D648 °C. 69 75 95 52612 C177 W/(m • K) 0.22 0.24 0.28 Thermal conductivity C351 kJ/(kg ● K) 1.5 1.8 Specific heat capacity 1.4 Fire behavior (3,2mm) UL94 94HB 94HB 94HB D2863 21 21 21 Oxvgen index Surface resistance 53482 93 D257 10¹² 10¹⁴ 0 53481 243 D149 kV/cm Dielectric strength Non toxicity BGA/FDA ves yes yes

3

3. Test of new guide materials for molding machines

Due to its outstanding allround properties, ZEDEX 100K has been tested and proved by the "Institut für Umformtechnik Hannover" (Institute of Molding Technology, Hannover) within a test engaged by the "Verband der deutschen Werkzeugmaschinenfabriken" (Association of German machine tool factories). The test consists of two parts:

- 1. Test bed trials with heavy duty molding machines to select new guide materials (AIF 7477). see reprint –
- 2. Test of selected new guide materials for molding machines on practical conditions (VDW 0520).

ZEDEX 100K achieved in every way positive results in part 1 as well as in part 2. ZEDEX 100K and ZEDEX 324 were the only two materials among all the other materials tested, which achieved the aim to be suited for dry running operations. These dry running properties of ZEDEX 100K were actually so extremely good, that ZEDEX 100K could be tested on non-lubricated continuous duty. Thereby ZEDEX 100K proved to be excellently suited for dry running sliding frictions.

In order to put this knowledge to your disposal and to verify the efficiency of ZEDEX 100K, you will find a reprint on the following pages (page 7-13), showing the test results of the first part. Whereas you will find the summary of the test results of the second part "test of selected new guide materials for molding machines on practical conditions" in the complete version behind the reprint on the pages 14-16.

In case of special interest, we may also send you the complete test report.

Range Research Construction Sheets Slideways coatings Sliding Composite qibs Price list Conditions of le & supply sal 6

ZEDEX 100

Test of new guide materials for ram guides installed in molding machines

by Eckhardt Doege and Heinz- Jörg Schmidt

Offprint taken from the technical journal "Blech-Rohre-Profile" (sheet metals-pipes-profiles) 38 (1991) 7/8 by Meisenbach GmbH, D-8600 Bamberg

Erprobung neuer Führungswerkstoffe für Stößelführungen von Umformmaschinen

Eckart Doege Heinz-Jörg Schmidt

Prof. Dr.-Ing. Eckart Doege ist Direktor des Instituts für Umformtechnik und Umformmaschinen an der Universität Hannover, Dipl.-Ing. Heinz-Jörg Schmidt ist wissenschaftlicher Mitarbeiter am selben Institut. Die durchgeführten Untersuchungen wurden mit Mitteln der Arbeitsgemeinschaft Industrieller Forschungsvereinigungen e.V. (AiF) gefördert und durch den Verein Deutscher Werkzeugmaschinenfabriken e.V. (VDW) betreut.

1 Ausgangssituation

Umformprozesse stehen in zunehmendem Maße in Konkurrenz zu den spanenden Fertigungsverfahren. Eine Verbesserung der Wirtschaftlichkeit von spanlosen Formgebungsverfahren ist zum einen durch eine Erhöhung der Ausbringung und Verringerung der Maschinenstillstandszeiten und zum anderen durch Einsparung spanender Nachbearbeitung möglich. Das Vermeiden von Nachbearbeitung, das heißt, die Fertigung paßgenauer, einbaufertiger Teile wird in der Umformtechnik einen immer höheren Stellenwert einnehmen. Die Forderung nach einer wirtschaftlichen Herstellung von Werkstücken mit hoher Genauigkeit und gleichbleibender Qualität stellt erhebliche Anforderungen an das System Maschine-Werkzeug. Zu den wichtigsten Bauelementen, durch die die Arbeitsgenauigkeit und das Leistungsvermögen einer Maschine erheblich beeinflußt werden können, gehören die Führungen. Die häufig verwendeten hydrodynamischen Gleitführungen werden in nahezu allen Umformmaschinen eingesetzt.

Grundsätzlich besteht die Aufgabe von Geradführungen in Werkzeugmaschinen darin, bestimmte Bewegungen in definierten Richtungen genau auszuführen ohne eigenständige Verschiebungen der geführten Bauteile zuzulassen. Bezogen auf den Bereich der Stö-Belführungen in Umformmaschinen bedeutet dies eine lagegenaue Führung des am Stößel befestigten Oberwerkzeuges gegenüber dem Unterwerkzeug. Prozeß- und Massenkräfte, die während des Arbeitshubs auf den Stößel einwirken, führen zu einer Abweichung der tatsächlichen Stößelbewe-

gung von der idealen Bewegung. Von besonderem Einfluß sind in diesem Zusammenhang die beispielsweise durch die Anordnung mehrerer Werkzeuge im Arbeitsraum der Maschine hervorgerufenen außermittigen Belastungen, die zu erheblichen horizontalen Kräften führen können [1]. Hierdurch kommt es zu sehr großen Flächenpressungen (Kantenpressungen) in den Stößelführungen und zu Kippungen des Stößels (Bild 1). Die einwirkenden Pressungen können dabei um den Faktor 10 über denen von zerspanenden Maschinen liegen. Unter ungünstigen Betriebsbedingungen können Flächenpressungen bis 211 100 N/mm2 auftreten. Diese örtlich sehr hohen Belastungen beeinträchtigen die Tragfähigkeit des Schmierfilms und führen durch unerwünschte Reibungszustände zu einem erhöhten Verschleiß der Gleitführungsmaterialien.

Die kurze, sich ständig wiederholende, stoßartige Belastung der Führungen sowie die Richtungsänderung im unteren Umkehrpunkt des Stößels unter hohen Lasten sind allein für Umformmaschinen typisch. In Verbindung

Bild I. Beanspruchungsverlauf einer Maschinenführung unterschiedlicher Führungsanordnung [1]

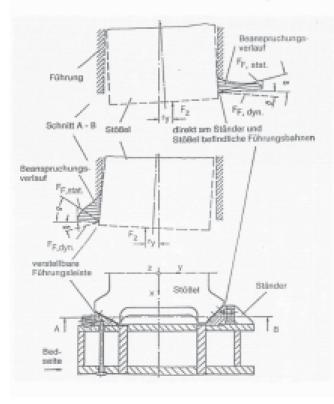
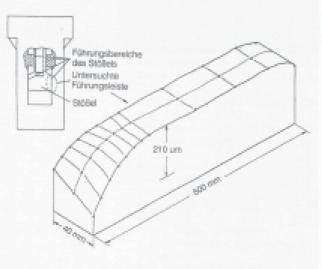
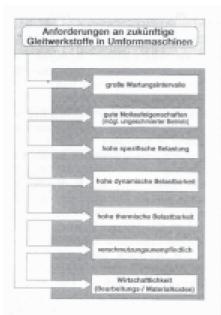
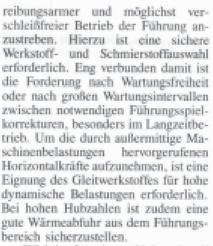



Bild 2. Vermessene Kontur der hinteren Führungsleiste einer Spindelpresse (Gleitmaterial: Bronze)




Bild 3. Zielsetzungen für Gleitwerkstoffe in Umformmaschinen

mit der im allgemeinen geringen Stö-Belgeschwindigkeit können die impulsförmigen Belastungen zu Störungen des Schmierfilms und damit zu unerwünschten Reibungszuständen (Mischreibung) und ungleichmäßigem Materialverlust durch Verschleiß führen. Hierdurch verändert sich mit zunehmender Betriebsdauer das Führungsspiel, die Arbeitsgenauigkeit wird erheblich beeinträchtigt und als Ergebnis können unerwünschte Maßschwankungen am Umformprodukt auftreten. Beispielhaft zeigt Bild 2 hierzu eine Führungsleiste aus Bronze, die nach rund 800 Betriebsstunden in einer Spindelpresse vermessen wurde. Zur Erfüllung der Qualitätsforderungen ist daher - abhängig vom Verschleiß - ein häufiges Nachstellen der Führung erforderlich. Im ungünstigen Fall kommt es durch Freßerscheinungen zu einem vorzeitigen Ausfall. Zudem führen die durch Mischreibung auftretenden hohen Reibwerte zu Energieverlusten und verringern den Wirkungsgrad des Antriebs.

$\mathbf{2}$ Anforderungen an Gleitführungswerkstoffe

Anforderungen und Betriebsbedingungen für Stößelführungen in Umformmaschinen, speziell für Gleitführungen, lassen sich wie folgt definieren (Bild 3).

Neben der Realisierung eines geringen Führungsspieles, ist cin

Meßgrößen

": Reibbeivert

Druckkraft

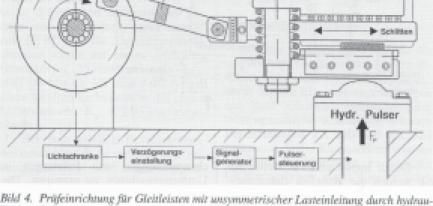
Schubkraft Lastableagung Temperatur Verschield

lischen Pulser

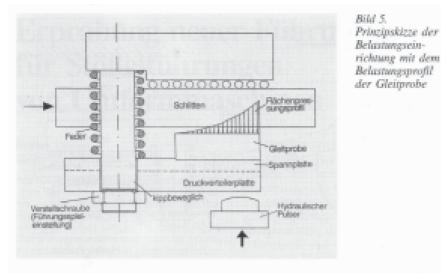
Wichtig für einen Gleitwerkstoff ist die Unempfindlichkeit gegenüber Schmutzeinwirkung. Ein hohes Einbettungsvermögen des Werkstoffs verhindert die vorzeitige Zerstörung der Gleitflächen durch Abrasion. Ein Versagen der Führungswerkstoffe durch harte Fremdpartikel im Führungsspalt kann damit verhindert werden. Neben dem verschleißarmen Betrieb mit ausreichender Schmierstoffmenge zwischen den Reibflächen, besteht die Forderung nach guten Notlaufeigenschaften der Führungswerkstoffe. Anzustrebendes Ziel ist ein möglichst unschädlicher Trockenlauf bei unmittelbarer Festkörperberührung auch über längere Zeiträume. Hierfür sind Kunststoffe (Polymerwerkstoff) eher geeignet, da bei rein metallischen Partnern stets mit der Möglichkeit von Kaltver-

schweißungen (Fressen) der Bewegungspartner gerechnet werden muß [3].

Druckme8dose.


Gleitführungsanordnung sind nicht nur die reinen Materialkosten interessant, immer sind auch mit der Bearbeitung und der Befestigung des Gleitwerkstoffes beträchtliche Kosten verbunden. Diesen genannten Zielsetzungen stehen im Bereich der Umformmaschinen die eingangs erwähnten Betriebsprobleme wie hohe Flächenpressung und ungleichmäßiger Führungsverschleiß gegenüber, die den Einsatz eines Werkstoffes als Gleitführungswerkstoff behindern können.

3 Prüfstand zur Gleitleistenuntersuchung


Zur Untersuchung der Eignung und des Betriebsverhaltens der in Frage kommenden Gleitwerkstoffe wurde am Institut für Umformtechnik und Umformmaschinen in Hannover ein spezieller Versuchsstand als Prüfeinrichtung entwickelt, der die charakteristischen Betriebsverhältnisse von Stößelführungen in Umformmaschinen wie

- hohe Flächenpressung (Kantenpressung),
- kurze impulsförmige Belastung.
- sinusförmige Stößelgeschwindigkeit mit Richtungsumkehr,
- Belastungsmaximum kurz vor Richtungsumkehr
- wirklichkeitsnah simuliert.

Für die Wirtschaftlichkeit einer

Kraffmessuno

Durch implementierte Meßsensorik werden die aktuellen Belastungsund Betriebsparameter erfaßt (Bild 4).

Der Versuchsstand ermöglicht die Variation der Betriebsparameter:

- Gleitleisten-Versuchswerkstoff:
- Werkstoff der Gegengleitfläche (Reibpartner);
- Schmierstoffeinsatz;
- Belastungshöhe und Kraftverlauf; Außermittigkeit der -Kraftein-
- leitung;
- Belastungsdauer;
- Gleitgeschwindigkeit und 100
- Führungsspiel.

Die Grundbausteine des Gleitleisten-Prüfstandes bilden eine hydraulische Pulseinrichtung mit Steuerschrank, eine Belastungssimulationseinrichtung und eine Antriebseinheit zur Erzeugung der Gleitbewegung.

Der hydraulische Pulser besteht aus einem in der Höhe verstellbaren Viersäulen-Gestell mit zentrisch angeordneter Krafteinleitung über einen Hydraulikzylinder. Die Kraftaufbringung wird frequenzgesteuert und erfolgt impulsartig. Eine im Obergestell eingebaute Kraftmeßdose überwacht die erzeugte Belastung.

Kernstück des gesamten Prüfstandes ist die speziell für die Eignungsversuche entwickelte Einrichtung zur Erzeugung einer realitätsnahen unsymmetrischen Führungsbelastung (Bild 5). Diese Vorrichtung ermöglicht die Untersuchung von Gleitleisten unter extremen Belastungen im Dauerversuch. In der Belastungseinrichtung wird die Gleitleiste des zu untersuchenden Werkstoffes auf einer Druckverteilerplatte befestigt. Durch eine spezielle Einspannung dieser Platte ist es möglich, die charakteristischen Flächenpressungen von Führungen in Umformmaschinen zu erzeugen. Die Druckverteilerplatte ist an einem Ende durch zwei Schraubendruckfedern und Verstellbolzen verspannt, jedoch kippbeweglich zum ortsfesten Versuchsstand ausgeführt. Im Bereich der Krafteinleitung am freien Ende der Platte wird die zu untersuchende Gleitleiste befestigt. Hier erfährt die Gleitleiste die vorgewählte Kraft des Pulsers. Dagegen wird im Bereich der Druckfedern die Pulserkraft fast vollständig kompensiert, das heißt, daß in diesem Bereich die Belastung der Proben annähernd Null ist. Diese unsymmetrische Lasteinleitung ist kennzeichnend für die real auftretenden Belastungen an Stößelführungen.

Bild 5.

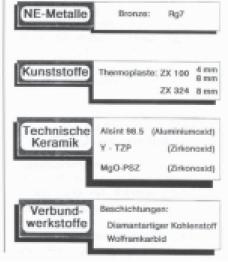
Um den Probenausbau zu erleichtern, ist die Druckplatte mit einem Kassettensystem für den Probenwechsel ausgerüstet. Beim Ausbau wird jeweils nur die Aufspannplatte gelöst, nicht aber die Gleitleiste selbst. Da sich die Aufspannverhältnisse nicht ändern, ermöglicht diese Konstruktion eine genauere Vermessung der Oberflächenkennwerte und -kontur der relativ kleinen und dünnen Proben.

Die translatorische Bewegung des Pressenstößels wird durch einen horizontal geführten Schlitten simuliert, der von einem Kurbelbetrieb bewegt wird und die Gegengleitbahn aufnimmt. Als Reibpartner der neuen Werkstoffe diente bei sämtlichen Versuchen eine gehärtete Stahl-Gleitleiste (Werkstoff: 90 Mn Cr V8),

Zur Durchführung der Untersuchungen und Charakterisierung der Belastungs- und Betriebsverhältnisse der jeweiligen Gleitleiste wurden an dem Versuchsstand in regelmäßigen Abständen

- die normal zur Gleitwerkstoffoberfläche einwirkende Belastungskraft.
- die axial wirkende Reibkraft.
 - die Temperatur an der Berührfläche der Gleitpartner und
 - der Gleitweg

gemessen. Aus den ermittelten Kräften wurde als Kenngröße der Reibungskoeffizient µ berechnet.


Nach einer definierten Anzahl von Belastungsspielen wurden die Oberflächenkennwerte R., R., R., R., R., bestimmt und die Oberflächenkontur der Gleitbeläge vermessen.

Um die Vergleichbarkeit der ermittelten Ergebnisse zu gewährleisten. wurden bei allen eingesetzten Gleitwerkstoffen die gleichen Einzeluntersuchungen durchgeführt. Das gesamte Versuchsprogramm unterteilt sich generell in Testreihen mit und ohne Schmierstoffeinsatz. Innerhalb beider Gruppen wurden verschiedene Versuche durchgeführt, insbesondere wurde das Betriebsverhalten über eine große Anzahl von Belastungsphasen bzw. einen längeren Zeitraum (Langzeitversuch) und bei unterschiedlichen Lasten (Hochlaufversuch) ermittelt.

Versuchswerkstoffe

Zur Untersuchung der Eignung als Führungswerkstoff in Umformmaschinen wurden verschiedene neue oder neuartige Gleitwerkstoffe auf dem Prüfstand hinsichtlich ihrer Reibungsund Verschleißeigenschaften getestet. Bei den verwendeten Materialien handelte es sich um die Werkstoffgruppen Nichteisen (NE)-Metalle, Kunststoffe, keramische Werkstoffe sowie um Beschichtungen metallischer Trägermaterialien (Bild 6).

Bild 6. Untersuchte Gleitwerkstoffe

4.1 Bronze

Als NE-Werkstoff wurde der häufig verwendete. Rotguß Rø7 (G-CuSn7ZnPb) eingesetzt. Dieser mittelharte Werkstoff bietet durch seinen Bleianteil gute Notlaufeigenschaften und damit Vorteile im Mischreibungsgebiet. Er vereinigt gute Laufeigenschaften und ist geeignet für hohe stoßhafte Belastungen [4].

4.2 Beschichtete Werkstoffe

Im Bereich der beschichteten Werkstoffe wurden eine verschleißfeste Wolframkarbidbeschichtung und eine Beschichtung mit diamantartigem Kohlenstoff eingesetzt. Die Herstellung der wolframkarbidbeschichteten Gleitwerkstoffe erfolgte mit Hilfe eines spe-

ziellen Spritz-Beschichtungsverfahrens, bei der der pulverisierte Spritzwerkstoff - im Gegensatz zum thermischen Spritzverfahren - mit extrem hoher Geschwindigkeit in das zu beschichtende Werkstück eingeschossen wird. Der Vorteil dieses Verfahrens besteht in der geringen Temperatur am Trägerwerkstoff (unter 150 °C), die keine thermischen Spannungen, Verzüge oder Gefügeänderungen hervorruft [5, 6]. Für die Eignungsuntersuchungen wurde auf einem gehärteten Grundkörper (55 HRC) aus dem Werkstoff 90 Mn Cr V8 eine rund 60 µm dicke Wolframkarbidschicht mit einem Mittelrauhwert Ra = 0,05 µm aufgebracht.

Bei dem zweiten Beschichtungswerkstoff handelt es sich um eine reibungsmindernde Schicht aus diamant-

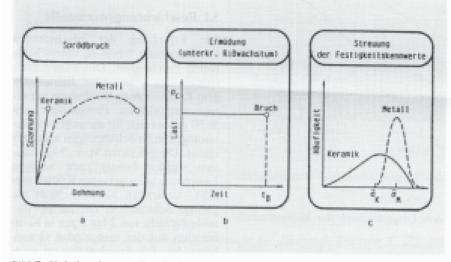
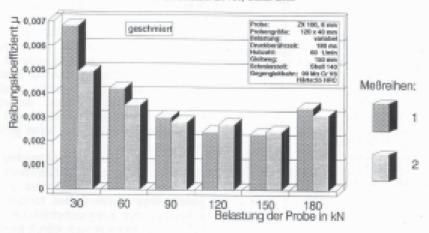



Bild 7. Verhalten keramischer Werkstoffe unter mechanischer Belastung [11]

Bild 8. Reibungskoeffizienten der Kunststoff-Gleitleiste C (ZX 100, 8 mm, geschmiert) bei unterschiedlichen Belastungen

Prüfwerkstoff: ZX 100, Dicke: 8mm

Reibungskoeffizienten bei unterschiedlichen Lasten

artigem Kohlenstoff, die nach dem plasmagestützten CVD-Verfahren (Chemical-Vapor Deposition) auf einen nicht gehärteten Probenträger aus St 50 aufgebracht worden ist. Das zu beschichtende Material bleibt bei diesem Vorgang praktisch kalt [7]. Die Dicke der Kohlenstoffbeschichtung lag bei 2 bis 3 µm.

4.3 Kunststoff-Beläge

Nach einer umfängreichen Analyse der marktseitig verfügbaren Kunststoff-Gleitbeläge wurden als Versuchswerkstoffe für die Eignungsuntersuchungen auf dem Gleitleistenprüfstand zwei thermoplastische Kunststoffe mit den Bezeichnungen ZX 100 und ZX 324 eingesetzt. Diese Kunststoffmaterialien erlauben im Gegensatz zu anderen Gleitbelagstypen einen Einsatz auch bei sehr hohen Flächenpressungen. Weitere Vorteile dieser Werkstoffe sind die Unempfindlichkeit gegenüber Kantenpressungen, das Anpassungsvermögen an fehlerhafte Geometrien, die Möglichkeit, harte Fremdpartikel oder Verunreinigungen in der Kunststoffoberfläche einzubetten, die Eignung für einen ungeschmierten Betrieb sowie die relativ geringen Kosten [8, 9].

4.4 Keramische Werkstoffe

Für den Bereich der keramischen Gleitleisten kamen folgende Werkstoffe zum Einsatz: Aluminiumoxidwerkstoff Alsint 98.5, Zirkonoxidwerkstoff TZP (TZP = Tetragonal Zirconia Polycrystals), Zirkonoxidwerkstoff MgO-PSZ (PSZ = Partially Stabilized Zirconia). Werkstoffbedingt weisen Keramiken im allgemeinen außergewöhnliche Festigkeitsstreungen auf, die auf Werkstoffinhomogenitäten und Volumensowie Oberflächendefekte zurückzuführen sind. Ihre Festigkeiten unterliegen statistischer Verteilung. Die werkstofftypische Sprödigkeit hängt mit dem überwiegend kovalenten oder ionischen Bindungszustand zusammen. Mechanisch oder thermisch hervorgerufene Spannungsspitzen können nicht durch plastische Vorgänge - wie durch das Gleiten von Versetzungen bei Metallen - abgebaut werden, sondern durch Rißbildung und Rißausbreitung. Dieses Verhalten verdeutlich ein schematisiertes Spannungs-Dehnungs-Diagramm einer typischen dichten Keramik (Bild 7). Im Gegensatz zu den Metallen findet der Bruch im elastischen Bereich statt. Die zugeführte elastische Energie wird bei Keramiken durch Bruch abgebaut [10].

5 Das Betriebsverhalten der Versuchswerkstoffe

Die Untersuchung bei unterschiedlichen Flächenpressungen ergaben für alle auf dem Versuchsstand geprüften Gleitleisten ein einheitliches Verhaltenn. Bei sämtlichen Gleitproben konnte bei ansonsten konstanten Versuchsparametern eine Abnahme des Reibungskoeffizienten mit zunehmender Belastung festgestellt werden. Hierbei reduzierte sich der ermittelte Reibkoeffizient auf bis zu 45 bis 70 % des Ausgangsreibbeiwertes (Last: 30 kN). In einigen Fällen kehrte sich

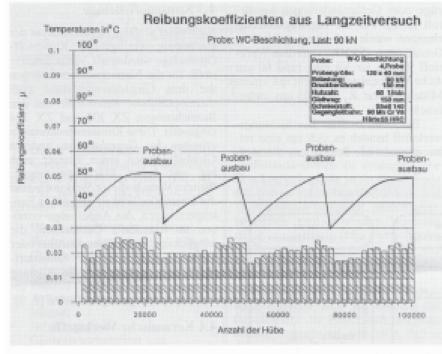


Bild 9. Reibbeiwerte und Temperaturen aus dem Langzeitversuch der Wolframkarbid-Gleitprobe 4

Bild 10. Reibbeiwerte und Temperaturen aus dem Langzeitversuch der Wolframkarbid-Gleitprobe 3

dieser Effekt in höheren Belastungsbereichen (Last: über 90 kN) um, so daß sich belastungsabhängige Reibwert-Minima bilden. Für den Kunststoff-Gleitbelag ZX 100 zeigt dieses Verhalten beispielhaft Bild 8.

Die mit den vorab genannten Gleitwerkstoffen durchgeführten Langzeitversuche unter konstanter Last von 90 kN führten dagegen zu unterschiedlichen Ergebnissen. Während ein Teil der Gleitmaterialien das Versuchsprogramm mit den extremen Belastungen völlig unbeschadet absolvierte, offenbarten andere bereits nach kurzer Zeit unzureichende Reibeigenschaften, zum Teil mit gravierenden Folgen für die Gleitpaarung. Im wesentlichen können die Ergebnisse wie folgt zusammengefaßt werden.

5.1 Beschichtungswerkstoffe

Die Erprobung der beschichteten Gleitwerkstoffe führte zu unterschiedlichen Ergebnissen. Die relativ kostspielige Beschichtung mit diamantartigem Kohlenstoff in Verbindung mit einem ungehärteten Probenträger aus St 50 erwies sich für die extremen Belastungen in Stößelführungen als ungeeignet. Die getesteten Versuchsgleitleisten wurden bereits nach wenigen Lastphasen unter geringen Kräften zerstört. Ursächlich hierfür scheint die geringe Schichtdicke der harten Verschleißschicht von 2 bis 3 µm in Kombination mit der mangelnden Grundhärte des Trägerwerkstoffes zu sein. Hierauf deuten die günstigen Ergebnisse der mit Hilfe eines aufwendigen Beschichtungsverfahrens hergestellten Wolframkarbid-Gleitleisten hin. Bei diesen Leisten wurde die verschleißmindernde Schicht auf einem gehärteten Trägerwerkstoff (55 HRC) aufgebracht. Die erzielte Schichtdicke betrug rund 60 µm. Von den zur Verfügung stehenden Gleitleisten dieses Typs erreichten zwei das Ende des Langzeitversuchsprogramms ohne Beschädigungen (Bild 9), während eine Versuchsprobe nach ungefähr zwei Dritteln der Gesamtdauer ausfiel (Bild 10). Der mittlere Reibungskoeffizient aller Einzelversuche belief sich auf $\mu_{\rm m} = 0.026$.

Bei der Simulation einer Unterbrechung der Schmierstoffzufuhr zeigte der Werkstoff über lange Zeit ein gleichmäßiges Reibwerhalten, für einen ungeschmierten Langzeitbetrieb unter hoher Last erwies er sich jedoch nicht geeignet. Aufgrund der durchgeführten Prüfstandsuntersuchungen ist von einem Einsatz der geprüften diamantartigen Kohlenstoffbeschichtung auf St 50 für hochbelastete Führungsaufgaben abzuschen. Die Wolframkarbidbeschichtung zeigte dagegen gute Notlauf- und Verschleißeigenschaften, die Dauereignung für große Lasten, insbesondere bei hohen Hubzahlen, ist jedoch nicht sichergestellt.

5.2 Kunststoff-Gleitbeläge

Sehr günstig und hinsichtlich ihrer Reibeigenschaften völlig unproblematisch zeigten sich die untersuchten Kunststoff-Gleitleisten aus ZX 100 und ZX 324. Die Ergebnisse der Dauerversuche mit diesen Kunststoffbelägen sind insgesamt sehr positiv zu beurteilen. Die bei 90 kN unter Einsatz von Schmiermitteln gemessenen Reibkräfte

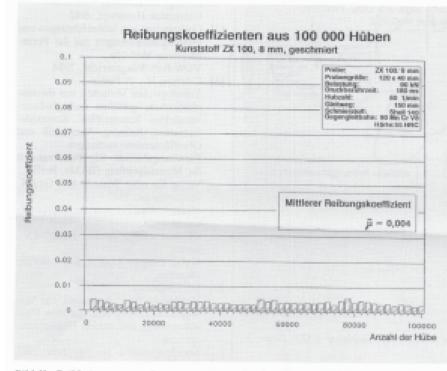
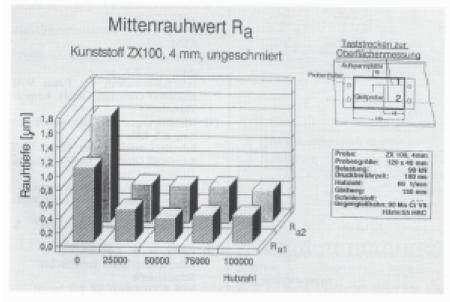



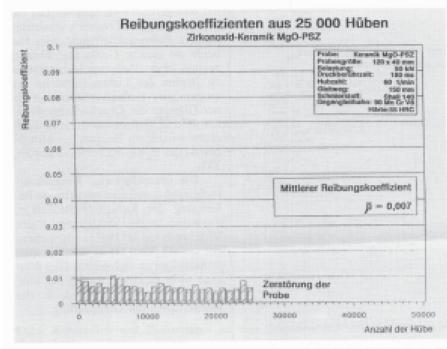
Bild II. Reibbeiwerte aus dem Langzeitversuch der Kunststoff-Gleitprobe C (ZX 100, 8 mm, geschmiert)

waren gering, der Reibungskoeffizient betrug im Mittel $\mu_{m} = 0,004$ (Bild II). Als einzige aller Versuchswerkstoffe erreichten beide Kunststoffvarianten das angestrebte Ziel des «ungeschmierten Dauerbetriebes». Der mittlere Reibbeiwert dieser Langzeit-Trockenläufe betrug hierbei $\mu_{m} = 0,052$.

Bei den durchgeführten Untersuchungen bezüglich des Reibungsverhaltens zeigten sich zwischen den beiden Werkstoffen ZX 100 und ZX 324 nur sehr geringe Unterschiede. Der im geschmierten Dauerversuch ermittelte mittlere Reibungskoeffizient wies für beide die gleiche Größe aus. Ebenso zeigten beide Varianten insbesondere zu Beginn der Langzeitversuche ein ausgeprägtes Einlaufverhalten mit einer Glättung der Oberflächenrauhheiten. Bild 12 verdeutlicht diese Einlaufcharakteristik am Beispiel des Mittenrauhwertes R, einer Gleitleiste aus ZX 100.

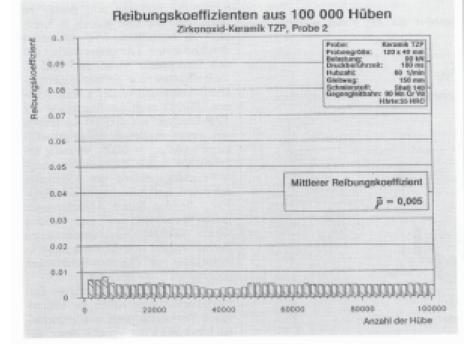
Die ungeschmierten Langzeitversuche erforderten eine modifizierte Befestigung der Kunststoff-Gleitbeläge. Zusätzlich zu der Verklebung ist eine Verschraubung der Beläge vorzusehen, um das Ablösen des Gleitbelags vom Probenträger zu verhindern. Dies führt zwar nicht zu einem Ausfall der Führungen, verschlechtert jedoch das Reibverhalten der Gleitpaarung.

5.3 Keramische Gleitwerkstoffe


Trotz der werkstoffeigenen Sprödigkeit sind auch die Ergebnisse aus den Untersuchungen der keramischen Gleitwerkstoffe insgesamt sehr positiv zu beurteilen. Sie sind jedoch differenziert zu betrachten. Die geschmiert durchgeführten Langzeitversuche mit den Werkstoffen Alsint 98.5 und Y-TZP ergaben sehr geringe Reibungskoeffizienten und verliefen ohne Schäden. Bild 13 zeigt die Ergebnisse der TZP-Keramik aus 100000 Lasthüben mit einem mittleren Reibungskoeffizienten von $\mu_m = 0.005$. Vorzeitig abgebrochen wurde dagegen die Langzeit-Eignungsprüfung der Gleitleiste mit einem Keramiksegment aus MgO-PSZ, die den hohen Anforderungen nicht gewachsen war und zerstört wurde (Bild 14). Im ungeschmierten Betrieb zeigten sich die Keramikwerkstoffe unter den bekannten Belastungen generell als nicht geeignet.

Neben den schr geringen Reibungskoeffizienten haben die keramischen Werkstoffe positive Eigenschaften hinsichtlich der Verschleißrate, der hohen Steifigkeit und des Führungsspiels, das bei den Gleituntersuchungen mit weniger als 0,1 mm gering gehalten werden konnte.

Der Versuch einer ausschließlich keramischen Gleitpaarung mit einer alternativ zu der Stahlgegenleitbahn eingesetzte Y-TZP-Keramik als Gegenbahnwerkstoff erwies sich unter den hohen stoßartigen Kräften als ungeeignet.


6 Ausblick

Die durchgeführten Prüfstandsversuche haben insbesondere für den thermoplastischen Gleitbelag ZX 100 und die Zirkonoxid-Keramik Y-TZP zu sehr positiven Ergebnissen geführt. Aus diesem Grund werden diese Werkstoffe im Rahmen eines durch den Verein Deutscher Werkzeugmaschinenfabriken e.V. (VDW) geförderten For-

schungsvorhabens in einer Maschinenstößelführung unter Praxisbedingungen erprobt. Hierbei wird das Werkstoffverhalten unter den real auftretenden Produktionsbedingungen untersucht werden.

7 Schrifttum

[1] Teutrine, J.

Untersuchung des Steifigkeitsverhaltens und der Führungsgenauigkeit von Schmiede-Exzenterpressen Dr.-Ing, Dissertation Universität Hannover, 1982

- [2] Optimierung von Stößelführungen und Führungsanordnungen mit der Finite-Elemente-Methode
- VDW-Forschungsbericht, 1984 [3] Czichos, H.; P. Feinle Tribologisches Verhalten von thermoplastischen, gefüllten und glasfaserverstärkten Kunststoffen. Kontaktdeformation, Reibung, Verschleiß und Oberflächenuntersuchungen Forschungsbericht 83, Bundesanstalt für Materialprüfung (BAM), Berlin Verlag für neue Wissenschaft GmbH, Bremerhaven, 1982
- [4] «Hütte», Taschenbuch der Werkstoffkunde Akademischer Verein Hütte e.V., Berlin

Verlag Wilhelm Ernst & Sohn, Berlin, München

[5] Buckmann, U. Haftbar machen. Auftragen von Verschleifischutzschichten mit dem Plasmaverfahren und mittels Detonationsspritzen. Nachde Machen 1087

Maschinenmarkt Nr. 24, Juni 1987, Vogel-Verlag Würzburg

- [6] Informationsmaterial zu Hochtechnologiebeschichtungen Informationsschrift der Firma Union
- Carbide, Ratingen [7] Irmler, H.O. Plus durch Plasma. Aspekte der Dünnschicht-Technologie Metall- und Kunststoffoberflächen KEM, März 1988
- [8] Kunststoff-Gleitführungen für Werkzeugmaschinen Informationsschrift der Firma Wolf Kunststoff Gleitlager GmbH, Kerpen-Türnich
- [9] Gleitführungen aus Kunststofflegierung ZX 100 Informationsschrift der Firma Wolf Kunststoff Gleitlager GmbH, Kerpen-Türnich
- [10] Kriegsmann, J.; H. Grenzhausen Was ist neu an den Mechanokeramikwerkstoffen? Keramische Zeitschrift, 1/1987, S. 31–35
- [11] König, W.; K. Gerschwiler Zähigkeitsverhalten keramischer Schneidstoffe VDI-Z 131 (1989) Nr. 1 – Januar

3.2. Results of the practice test

Owing to the results of the test bed trials carried out, the thermoplastic material ZEDEX 100K and the zirconium oxychloride ceramics Y-TZP have been selected for this employment, as they both showed very low coefficients of friction an the test bed. The polymer offers special advantages due to its dry running properties, whereas the ceramics due to its high strength and low wear.

The aim of this practice test was to verify the results of the test bed trials in one operation test, in order to achieve finally a secure knowledge about the performance of the guideways subjected to impact stress when moving reversed. The test of the plastic sliding frictions had been effected completely without any addition of lubricants; the sliding rails had merely been lubricated once on installation.

3.2.1. Summary:

The test bed trials carried out to test the suitability of new or completely new types of anti-friction materials for sliding frictions installed in molding machines have lead to very different results. Whereas one part of the anti-friction materials fulfilled the test program which was subjected to extreme stress completey undamaged, other materials showed insufficient frictional properties already after short time, which partly had serious consequences for the sliding combination. The results can be summarized as follows:

The tests carried out to show the frictional behaviour with different edge pressures yielded to the same behaviour for all sliding rails tested on the test bed. All the anti-friction materials tested showed a reduction of the coefficient of friction with increasing stress. Hereby the determined coefficient of friction has been reduced to 40-75 % of the initial value. In some cases this effect has been reversed in higher stress ranges (> 90 kN), which created stress-related minimums of coefficients of friction.

3.2.2. Coating materials:

The employment of the tested coating anti-friction materials lead to different results. The relatively expensive coating of diamond-like carbon in connection with an uncured test piece support made from ST-50 has to be considered unsuitable for the extreme stress exposed to ram guides. Both tested experimental slide lathes had been destructed already after short stress phases of low forces. This is due to the low coating thickness of the hard wear resista nt coating of 2-3 um in

combination with the lacking basic hardness of the support material. This is indicated by the more reasonable results achieved with slide lathes of tungsten carbide which has been produced by means of a complex coating process. Their wear resistant coating thickness of about 0.06 mm was consequently higher about the factor 20 than that of the carbon coating. The average coefficient of friction of all single tests was $\mu = 0.026$.

During the simulation of an interruption in lubricant supply the material showed an even frictional behaviour over a longer period of time (7000 strokes), whereas it turned out to be not suited for non-lubricated long-term operations subjected to high stress as showed the failure of a slide lathe after 8000 strokes. Owing to the effected test bed trials we have to refrain from the use of the tested coating of diamond-like carbon on ST-50 for heavy duty guide functions. Whereas the coating of tungsten carbide showed good emergency running properties and wear characteristics, they can, however, not been guaranteed to be suitable for long-term operations subjected to high stress and high numbers of strokes.

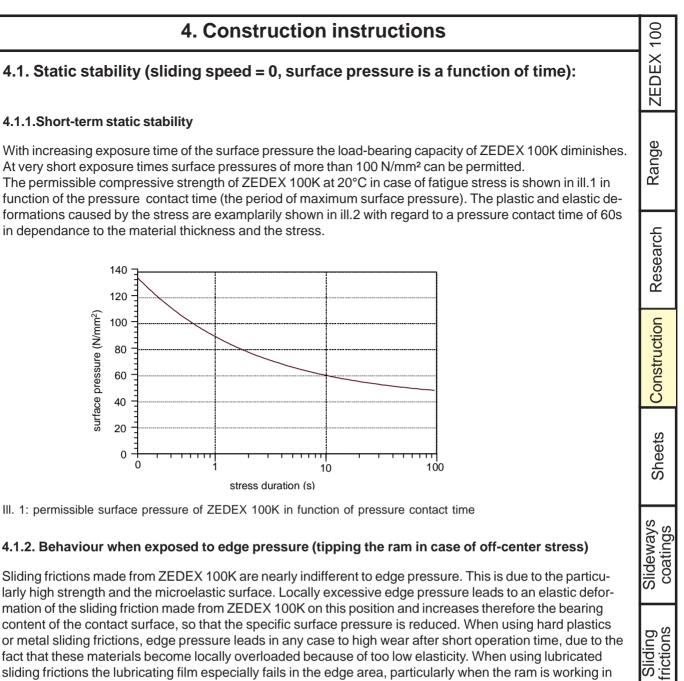
3.2.3. Plastic non-stick coatings:

The plastic slide lathes made from ZEDEX 100K and ZEDEX 324 which have been tested turned out to be very economical and unproblematic regarding their frictional properties. The results of the long-term tests with these coatings of a material thickness of 4 mm and 8 mm can altogether be judged very positively. The frictional forces measured on lubricant employment have been very low, the average coefficient of friction has been $\mu = 0.004$.

Both plastic variants allowed a non-lubricated long-term operation showing an average coefficient of friction of $\mu = 0.052$. At the beginning of t he long-term tests

both variants showed a distinct feed opening behaviour with a smoothing of the surface roughnesses. Whereas the attachment of the plastic non-stick coatings turned out to be problematic. During non-lubricated test bed trials the non-stick coatings detached from the test piece supports, which, however, did not lead to a total breakdown.

Within the framework of the practice test ZX-100 had been employed as anti-friction material on non-lubricated operation at the ram of a vehicle body press showing a nominal power of 8000 kN and so the guide


Research Construction Sheets Slideways coatings Sliding Composite qibs Price list Conditions of le & supply sal

15

ZEDEX 100

Range

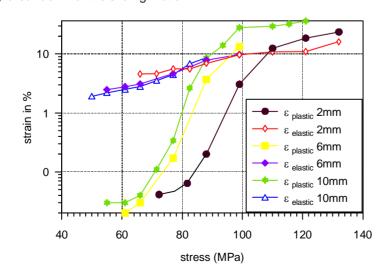
3.2. Results of the practice test	100
clearance, the temperature behaviour as well as the guide stress had been controled relating to measurement over a period of more than one year.	ZEDEX
The guide clearances determined after a production output of more than 750000 parts reveal a low wear of 0.2 mm. Especially noticeable is the relatively big clearance of sliding friction III of up to 0.5 mm at the endings of the lathes. However, an inspection of the accuracy showed an uncritical behaviour also at the end of the test, so that a readjustment of the sliding friction was not required. Also on non-lubricated operation the guide bars did not show any excessive heating-up. The measurement of the guide forces revealed the strongest guide stress at the lower dead spot of the ram, which is caused through a frame constriction. The surface pressures of maximum 1.5 N/mm ² which are occuring here are very low. The equipping of	Range
vehicle body presses with plastic sliding frictions is therefore a low-cost alternative to the previously used anti- friction materials, especially for lubricant-free operations.	÷
Apart from the practice test effected here, plastic sliding frictions have been inserted into about 10 further presses at a car manufacturers. The fact, that the circulating oil lubrication can be switched off, is to be considered especially advantageous. The non-sticking coatings are lubricated once on installation; during	Research
usual maintenance the grease layers become changed about every 3 years and the boreholes inside the slid- ing frictions function as oil absorptive spots. The experiences made with plastic sliding frictions are positive without exception, however, the stress should not exceed certain orders. For example, there are no problems in inserting them inside 4-point-presses, whereas when inserting them inside 2-point presses the durability cannot be guaranteed because of the higher partial stress. Furthermore, plastic sliding frictions are not suitable for the insert inside die cushions; due to unsteady stress the results have not been very satisfactory.	Construction
3.2.4. Ceramic anti-friction materials:	Sheets
Despite the materials characteristic brittleness also the inspections of ceramic anti-friction materials	
proceeded very positively without exception. The long-term tests effected after lubrication with the materials Alsint 98.5 and Y-TZP revealed very low coefficients of friction (u = 0.007 or u = 0.004) and proceeded without damages. Whereas the long-term suitability test of a guide bar provided with a ceramic segment made from MgO-PSZ, which could not fulfill the high requirements and became destructed, had to be stopped earlier. However, the ceramic materials revealed to be unsuited for non-lubricated operations. Besides the very low coefficients of friction ceramic materials show further positive properties regarding their rate of wear, the high rigidity and the guide clearance, which could be kept small with 0.1 mm during anti-	Slideways coatings
friction tests. An experiment with an exclusively ceramic anti-friction combination together with a counter-slideways material made from Y-TZP-ceramic alternatively to the counter-slideways made from steel, revealed to be unsuited for operations exposed to high impact stress.	Sliding frictions
The test bed trial of the ceramic material zirconium oxide Y-TZP has been effected on the sliding friction of a 1600 kN-C-frame press. This experiment could not do without the use of lubricants. After six weeks of opera-	
tion the tests had to be stopped because of little fragments which detached from the ceramic segment. The analysis of the damage revealed, that only a small specific part of the sliding friction was involved in the load discharge creating local stress which could permanently not be managed by the ceramics.	Composite gibs
However, the bad adjustability of the dovetail guide proved to be disadvantageous in this connection, so that the parallelism of the guide surfaces could not completely be achieved. The determinations of the guide clear- ances already indicated this insufficiency regarding the end zones of the sliding frictions. Also the temperature behaviour of the material with maximum temperatures of up to 40°C has been more conspicuous than that of the plastic sliding frictions. The molding pressures achieved values of 600 kN up to 1300 kN for the tools employed partly showing considerable eccentricities of stress. This also created a higher surface pressure of maximum 13 N/mm ² . The inspections effected have shown, that a ceramic substitute for existing sliding frictions require high effort as well as attention to a great extent concerning the	Price list
design of the sliding surfaces and the installation of ceramics. According to the information by the "Fraunhofer Institut für keramische Technologien und Sinterwerkstoffe in Dresden" (Fraunhofer Institute of ceramic technologies and sinter materials at Dresden) and the current devel-	Conditions of sale & supply
opments in technology the bearable stress limit of ceramics is about 1000 MPa. This value is also achieved by the material Y-TZP which had been employed for the practice tests. The development of efficient ceramic materials is intensively driven forward, especially for non-oxide ceramics with bearable stress of about 1500 MPa and high strength. A development period of 2 to 5 years is predicted.	<u>ට ೫</u> 16

content of the contact surface, so that the specific surface pressure is reduced. When using hard plastics or metal sliding frictions, edge pressure leads in any case to high wear after short operation time, due to the fact that these materials become locally overloaded because of too low elasticity. When using lubricated sliding frictions the lubricating film especially fails in the edge area, particularly when the ram is working in the lower dead spot area, for this point is exposed to high surface pressure and low sliding speed due to movement reversion. In such cases, only materials with good emergency running properties can avoid the early breakdown of the sliding friction.

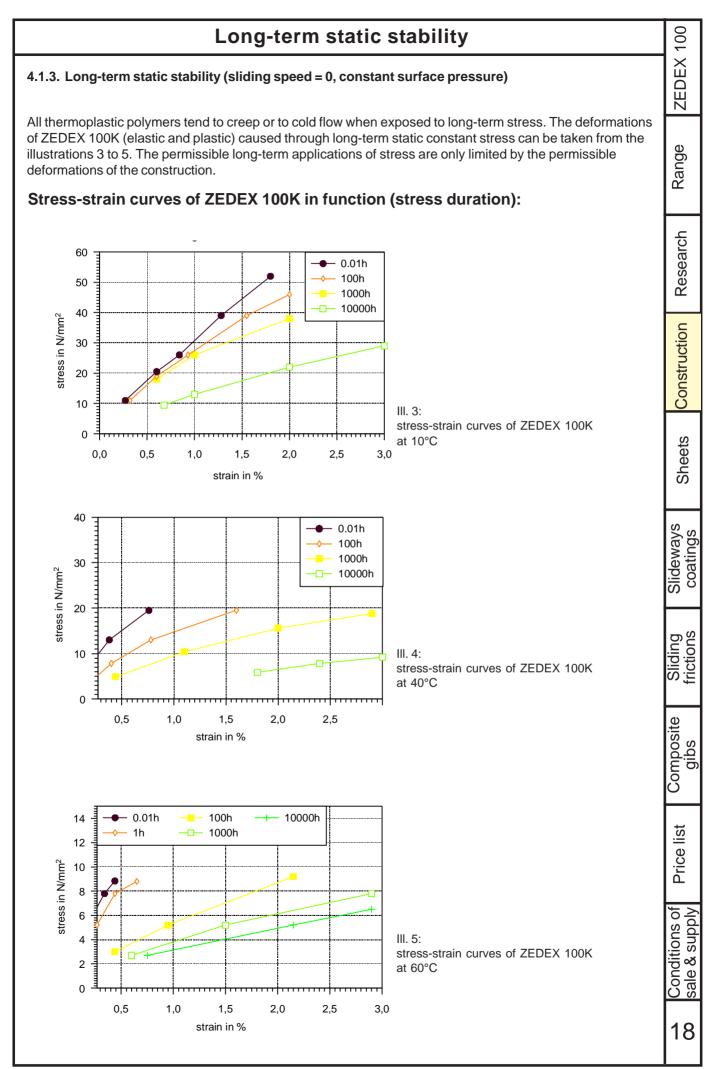
Composite

Price list

Conditions of supply


ð

逊


sal

17

so

III. 2: elastic and plastic deformations of ZEDEX 100K exposed to stress (60s) of different material thicknesses

Dynamic stability of ZEDEX 100

ZEDEX 100

Range

Research

Construction

Sheets

Slideways

Conditions of sale & supply

19

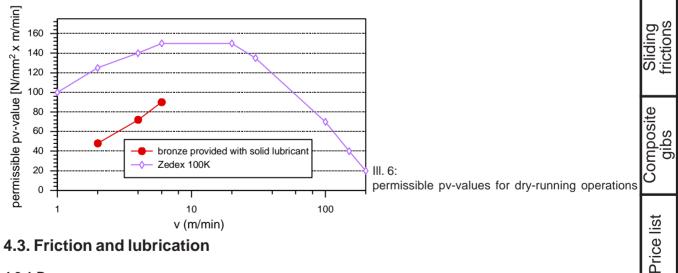
coatings

4.2. Dynamic stability of ZEDEX 100

The dynamic stability of ZEDEX 100K (simultaneous occurrence of surface pressure and relative movement on the sliding friction) is only limited by the temperature developing on the sliding friction due to frictional heat. Frictional heat emerges from the transition of kinetic and deformation energy into thermal energy. The py-value is a measure of the developing thermal energy. This enables an estimation of the maximum stress on the sliding frictions, provided that the guide temperature does not exceed 60°C. Assuming that the local heat, which is streaming in, symmetrically spreads over the entire coated guideway, we use an average pv-value for the determination of the stability of sliding frictions, which can be calculated as follows:

see equation 1

$$pv_{m} = \frac{p_{max} \bullet t_{B} \bullet L_{F\ddot{U}}}{7,8 \bullet t_{HUB}^{2}}$$

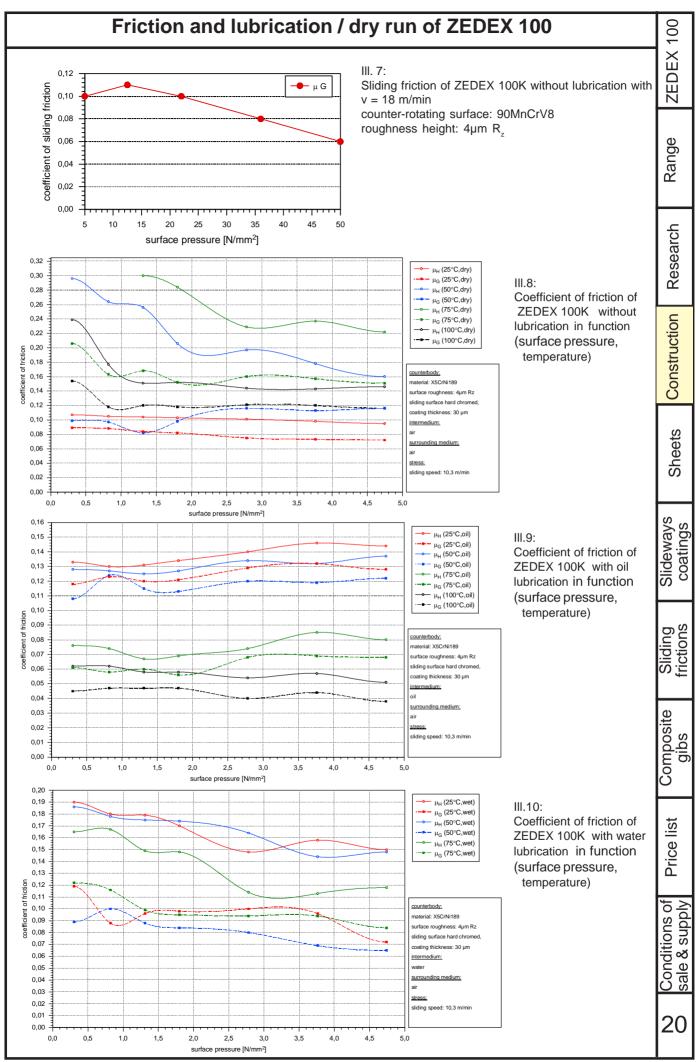

= pressure contact time (s) t_R t_{Hub} = time required for 1 stroke (s) $pv_m = average pv-value (N/mm^2 \cdot m/min)$ = sliding speed (m/min) L_{EII} = coated guideway (mm)

equation 1

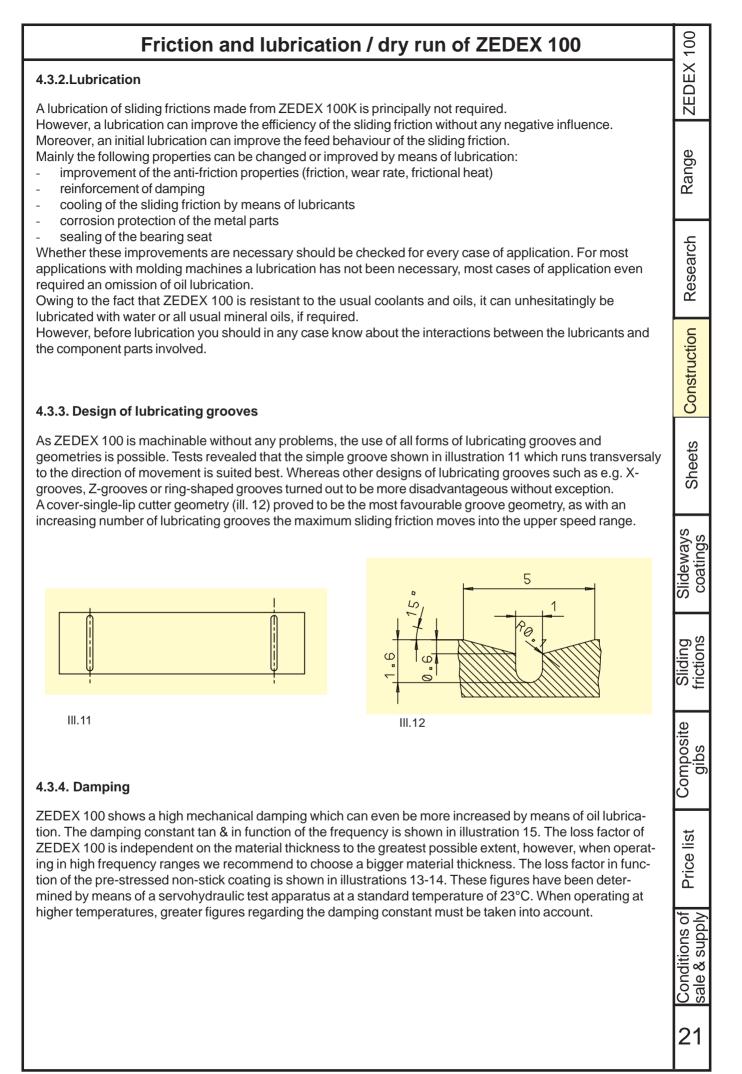
The pressure contact time is the time which must bear the maximum surface pressure on the sliding friction. In general, the main stress on sliding frictions occur with molding machines when lowering the guide bar or when cutting and lowering the distances. The highest stress by far occurs when lowering the distances (lower dead spot), so that applications of stress which are resulting from the lowering of the guide bar and the cutting can be neglected.

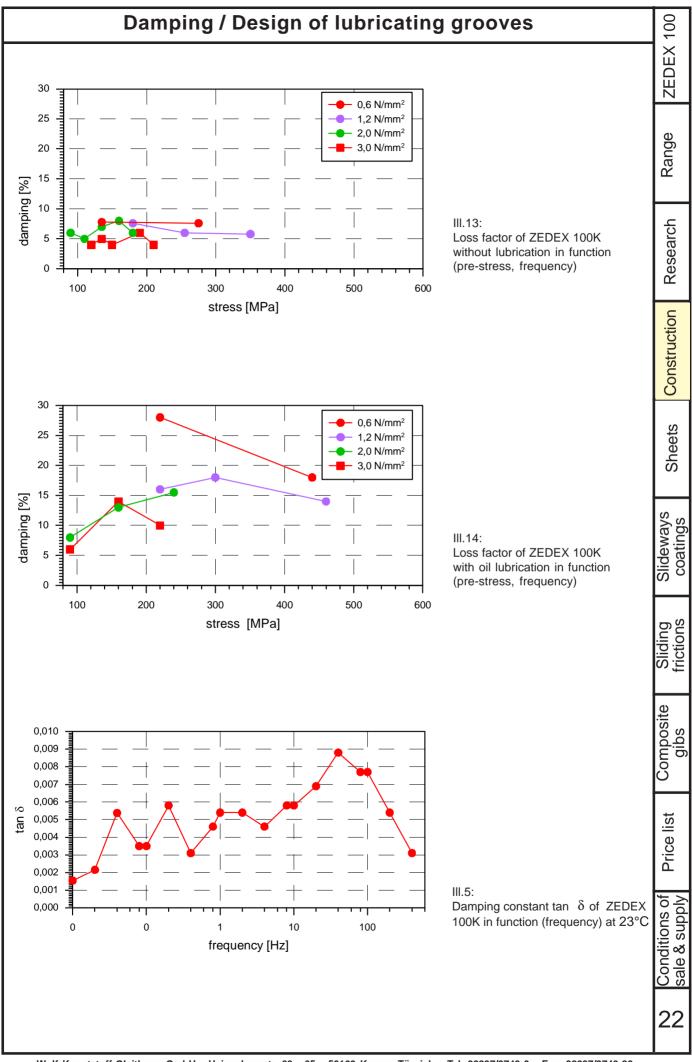
In case the average pv-value of the application lies below the curve of the permissible pv-value (ill. 6) according to equation 1, we can principally assume that the guide temperature does not exceed 55°C and that the sliding friction is sufficiently dimensioned. However, this rough convergence should in no case replace test bed or field trials.

In order to determine the maximum permissible pv-value we assume a constant ambient temperature of 20°C, a pressure contact time of 0.2s per stroke as well as a sufficient guide clearance. In case the abovementioned parameters change, the permissible pv-value must be corrected accordingly.



4.3. Friction and lubrication


4.3.1.Dry run


Due to its favourable frictional properties ZEDEX 100K can normally be used for operations without lubrication that are dry-running operations.

The operation with dry-running non-stick coatings made from ZEDEX 100K is characteristic of a steady silent frictional behaviour with a low coefficient of friction. The coefficients of friction shown in illustration 7 have been determined on conditions of use as they are with molding machines (v = 20 m/min and pressure contact time = 0.25s). These coefficients of friction which have been determined "in practice" cannot be compared to those determined in laboratory tests (ill. 9-10). These figures are only shown here in order to emphasize tendences in case of changing the temperature or the intermedium.

Wolf Kunststoff-Gleitlager GmbH • Heisenbergstr. 63 - 65 • 50169 Kerpen-Türnich • Tel. 02237/9749-0 • Fax. 02237/9749-20

Wear and shrinking properties of ZEDEX 100

ZEDEX 100

Range

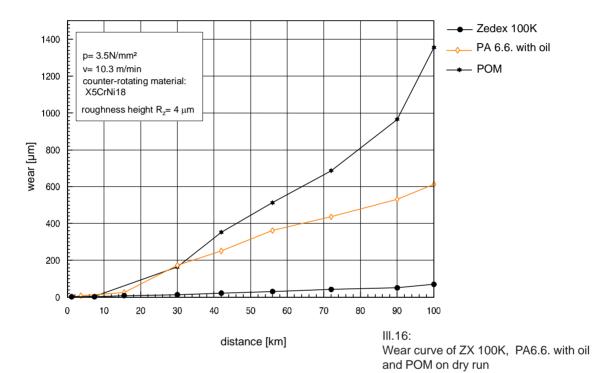
Research

Construction

Sheets

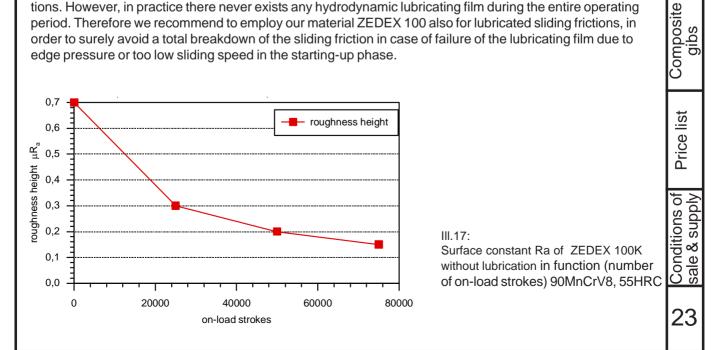
Slideways coatings

Sliding frictions


qibs

4.4. Wear and shrinking behaviour

ZEDEX 100 distinguishes itself by its favourable frictional properties.


Starting with high roughness and high coefficients of friction on installation, the surface of the sliding friction made from ZEDEX 100 as well as that made from steel become smoother. This smoothing process initially requires a higher material abrasion from the plastic surface.

With an increasing tyre tread the smoothing approaches an optimum, so that the coefficient of friction as well as the wear rate are steadily reduced until they have reached this optimum. The change of the center roughness value created by this is shown above the number of on-load strokes in illustration 17. This also reflects the shrinking behaviour of guide bars made from ZEDEX 100. Please notice that the coefficient of static friction increases with an growing tyre tread due to the increase of the bearing share. In connection with adhesion this may lead to stick-slip in case of oil-lubricated sliding frictions. The comparison of wear rates shown in illustration 16 reveals that ZEDEX 100 compared to other thermoplastic anti-friction materials shows considerably more favourable wear properties on dry-running operations.

4.4.1. Lubricated sliding frictions

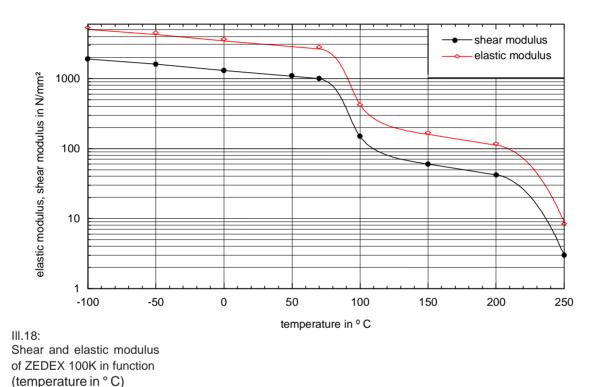
Lubricated sliding frictions should not show any considerable wear when operating on hydrodynamic conditions. However, in practice there never exists any hydrodynamic lubricating film during the entire operating period. Therefore we recommend to employ our material ZEDEX 100 also for lubricated sliding frictions, in order to surely avoid a total breakdown of the sliding friction in case of failure of the lubricating film due to edge pressure or too low sliding speed in the starting-up phase.

Wolf Kunststoff-Gleitlager GmbH • Heisenbergstr. 63 - 65 • 50169 Kerpen-Türnich • Tel. 02237/9749-0 • Fax. 02237/9749-20

Sliding partner / Accuracy and guide clearance	100
4.4.2. Sliding partner	ZEDEX 100
The surface quality and the material of the sliding partner influence the wear properties of sliding frictions made from ZEDEX 100 as a matter of priority. Predominantly steel and poured iron are used as sliding partners. For high-quality sliding frictions we recommend to employ cured and ground sliding frictions of a hardness of 60 HRc and a roughness of Rt = 2 to 3 um; this enables an extremely long life of sliding frictions made from ZEDEX 100 as well as an avoidance of damage to the sliding partner in extremes. When operating with sliding frictions of low demands you may perfectly use a sliding partner made from	Range ZE
poured iron of a hardness of 240 HB. However, a loss to life-span must be taken into account here. 4.5. Accuracy and guiding clearance	Research
The guide clearance may be reduced to below zero (pre-stress) when operating with low pv-values. Whereas when operating with higher sliding speeds and high pv-values a sufficient guide clearance should be provided in order to avoid an excessive heating-up. A guide clearance which is too narrow in connection with extreme stress may cause melt wear to the plastic coating; this melt wear, however, does not damage the metallic counter-rotating partner in any case, so that the sliding friction may be completely operational again after replacement of the plastic sliding friction and adjustment of the adequate guide clearance.	Construction
4.5.1. Dimensional stability	ets
The dimensional stability of sliding frictions made from plastics is influenced by the following factors.	Sheets
4.5.1.1. Moisture absorption ZEDEX 100 only absorbs few quantities of moisture out of air or water, so that a change of humidity inside the material structure does not cause any considerable dimensional changes.	Slideways coatings
4.5.1.2. Resistance to coolants ZEDEX 100 is absolutely resistant to coolants, even to biodegradable coolants, so that the influence of cool- ants does not cause any dimensional changes.	Slide
4.5.1.3. Resistance to oil ZEDEX 100 is absolutely resistant to lubricating and cutting oils, so that no dimensional changes are created.	Sliding frictions
In case of bonded sliding frictions the glueline must be protected against entering liquids according to our bonding instructions.	Composite gibs
	Price list
	Conditions of sale & supply
	24
	1 - - -

Behaviour when exposed to environmental influences

4.6. Behaviour when exposed to environmental influences

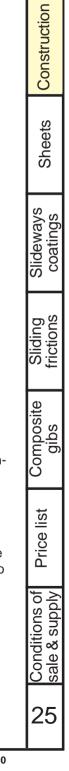

4.6.1.Exposure to heat

The exposure to surrounding heat or developing frictional heat causes the change of different material properties which are important for sliding frictions and must therefore taken into consideration regarding the construction:

With increasing temperature ZEDEX 100 reduces its strength (see elastic modulus in function of temperature shown in illustration 18), it changes its volume (the coefficient of expansion is six times as big as that of steel) as well as the coefficients of friction.

The limiting value of the guide temperature is 60°C. Up to this temperature the changes can be neglected in almost every case of application.

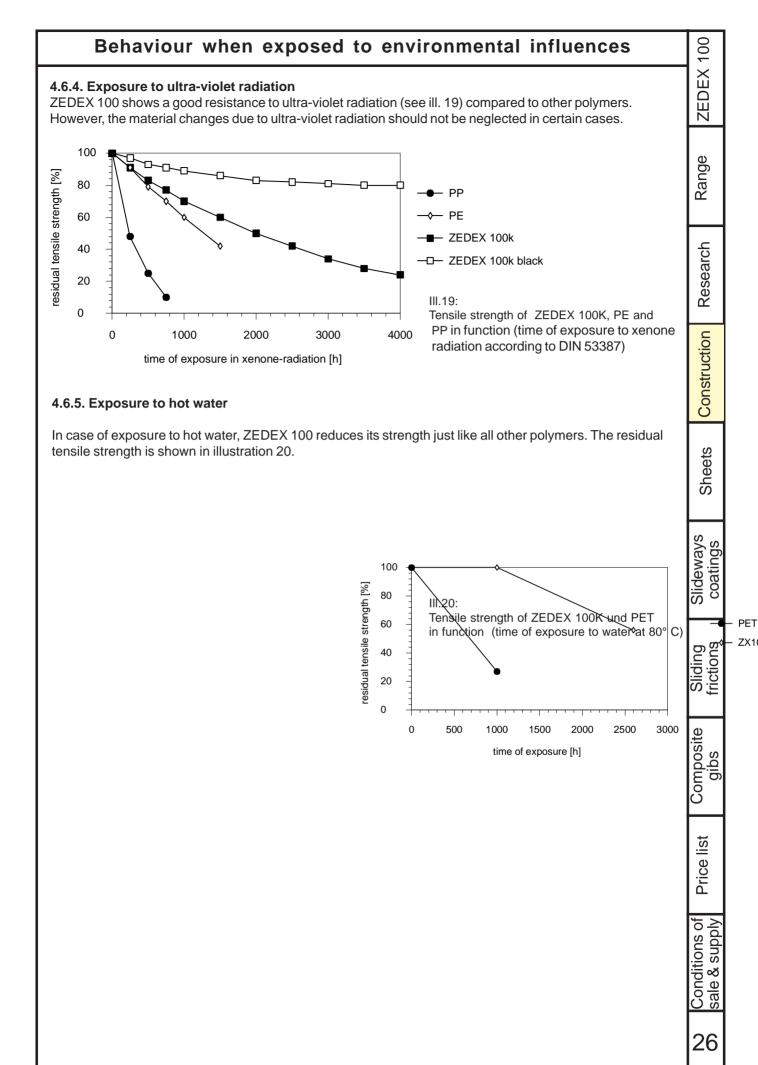
In case of temperatures exceeding 60°C on the sliding surface, we ask you to obtain our advice.


4.6.2. Exposureto temperature fluctuations

For applications exposed to high temperature fluctuations the sliding friction should be provided with expansion joints or with our special composite gibs.

In any case, however, the kind of attachment should be suited for the temperature range.

4.6.3. Exposure to dirt


Sliding frictions made from ZEDEX 100 have very good embedding properties, so that entering particles are embedded into the elastic sliding friction made from ZEDEX 100 and therefore do not cause any damage to the surface of the sliding partner.

ZEDEX 100

Range

Research

Behaviour when exposed to chemicals	100
4.6.6. Exposure to chemicals The chemical resistance should not be mixed up with the stress cracking sensitivity.	ZEDEX 100
The stress cracking sensitivity means the accelerated fracture or crack formation, which is created due to exposure of mechanically stressed parts to certain chemicals. Just mechanical stress or just influencing chemicals do not cause such damages or only after a much longer period of time. Stress cracking sensitivity mainly occurs with amourphous polymers.	Range
Component parts made from ZX-100 are almost indifferent to this phenomenon, whereas amorphous products showed this symptom only in contact with benzine, propylene chloride and some alcohols, esters and	
ketones. In general, ZX-100 is very well resistant to aromatic and aliphatic hydrocarbons, oils and greases. It is not af- fected by diluted acids, non-alkaline salt solutions and perhalogenated hydrocarbons. Some polyhydric alcohols, esters and partly halogenated hydrocarbons cause a low swelling. The softening resulting from this does not create any remaining disadvantages.	Research
Oxidising mineral acids affect ZX-100. Moreover, ZX-100 is soluble in concentrated alkaline solutions, phenols, cresols and similar chemicals. Water at room temperature does neither have any chemical nor physical influence. The material almost does not absorb any water (maximum 0.3 %). The water absorbed does not act as plasticiser. ZX-100 is not resistant to hot water as it is not resistant to hydrolysis and gradually decomposes just like other polycondensation products.	Construction
It decomposes very quickly in steam. The figures shown in the table revealed in the course of a chemical re- sistance test, where non-stressed test pieces (ISO-1 bars) had been stored in different chemicals for two months. While using the following table please note that the corrosion rate is affected by many factors like e.g.	Sheets
 concentration, temperature and the existence of impurity. In general this textbook shall be used to classify materials with regard to their chemical resistance (including the usual impurities of the chemicals). The classifications should be comprehended as a first approach for your requirements. ▲ resistant, no attack, no or only a very low change in weight (<1%). 	Slideways coatings
Change in mechanical properties less than 10%.	۵
sparingly resistant, after a certain time the mechanical properties are considerably falling off (10%-50%). Change in weight 1% up to 5%. In many cases a short contact with the chemical may be permissible.	Sliding frictions
\mathbf{Y} not resistant, change in weight >5% and/or reduction of the mechanical properties more than 50%.	e
	Composite gibs
	Price list
	Conditions of sale & supply
	27

Chemical	Total formula	Synonym	Concentration	n Temperature °C					
			%	20	40	60	80	100	
,2-dichloroethane	$\{C_2H_4CI_2\}$		100	7					H
,4-dioxane	$\{C_4H_8O_2\}$		100	≮		К			
-butanol	$\{C_4H_{10}O\}$	butyl alcohol	100	7		7			
cetic acid	$\{C_2H_4O_2\}$		100	R		7	И		
			10	↑		7	ы		
cetone	$\{C_3H_6O\}$		100	←					
mmonium hydroxide	{NH ₅ O}		100	Ы					H
			10	R					
niline	{C ₆ H ₇ N}	aminobenzene	100	↑					
enzene	$\{C_6H_6\}$		100	↑		И			
rake fluids (DIN 53521)			100	↑		↑	↑		
romine	{Br ₂ }		100					7	
utane	$\{C_4H_{10}\}$		100	↑					L
utyl acetate	$\{C_6H_{12}O_2\}$		100	↑		↑			
alcium chloride	{CaCl ₂ }		10	♠		↑			
alcium hypochlorite	{CaCl ₂ O ₂ }		100	↑		↑			
arbon disulfide	{CS ₂ }		100	♠					
arbon tetrachloride	${CCI_4}$	tetrachloromethane	100	≮					
hloroform	{CHCI ₃ }	tricloromethane	100	R					
hromic acid	{H ₂ CrO ₄ }		40	↑		↑	↑		
itric acid	{C ₆ H ₈ O ₇ }		10	↑		↑	1		
ottonseed oil			100	^		1	1		
resol	{C ₇ H ₈ O}		100	N		R	Ы		
etergents, synthetic			20	♠		↑	•		
ibuthyl phthalate	{C ₁₆ H ₂₂ O ₄ }		100	^		<u>^</u>			
Diesel oil			100	↑		•			Г
liethyl ether	{C ₄ H ₁₀ O}	ether, ethyl ether	100	1					
thanol	{C ₂ H ₆ O}	alcohol, ethyl alcohol	100	↑					
thyl acetate	$\{C_4H_8O_2\}$		100	·					
thylene glycol	$\{C_2H_6O_2\}$	glycol	100	^		7			į.
ormic acid	{CH ₂ O ₂ }	methane acid	95	7		R	И		ľ
	(- 2-2)		5	^		7	7		
reon 11	{CFCl ₃ }		100	^		••			
lycerol	$\{C_3H_8O_3\}$		100	· 1		1			
eptane	{C ₇ H ₁₆ }		100	<u>↑</u>		T			
	$\{C_6H_{14}\}$		100	Τ ↑		1			ā
				-					
ydrochloric acid	{HCI}		30	N		R	R		H
			10	↑		7	Ы		4
ydrofluoric acid	{HF}		50	N.		н	R		
	(11.0.)	hudronon our provide	5	↑		7	Ы		
ydrogen peroxide	$\{H_2O_2\}$	hydrogen superoxide	30	↑		-			
sopropyl alcohol	{C ₃ H ₈ O}	2-propanol	100	7		7			Ċ
avelle water		eau de Javelle	10	↑		1	↑		- H
ubricating grease			100	1		↑	↑		
nethanol	{CH ₄ O}	methyl alcohole	100	↑		_			
nethyl ethyl ketone	{C ₄ H ₈ O}	2-butanone	100	1		R			
nethylene chloride	{CH ₂ Cl ₂ }		100	R		Я			
nineral oils			100	↑		↑	↑		
itric acid	{HNO ₃ }		40	И		Ы	Ы		L
			10	↑		И	ы		
leic acid	$\{C_{18}H_{34}O_2\}$		100	↑		↑	↑		
live oil			100	^		^	•		
etrol			100	1			Ľ		
etroleum			100	↑					
			100	L T			I		

В	ehaviour	when exposed to	chemical	S					ZEDEX 100
Chemical Total formula Synonym Concentration Temperature °C									Ιŵ
Chemical	Total formula	Synonym	Concentration %	Temperature °C 20 40 60 80 100					
phenol	{C ₆ H ₆ O}		100	7	40	N	3	100	N
phosphoric acid	{H ₃ PO ₄ }		70	↑		_ ↑	_ ↑		
potassium chloride	{KCI}		10	^		^	1		υ
potassium dichromate	{K ₂ Cr ₂ O ₇ }		100	T ↑		Т	Т		Range
potassium hydroxide	{KOH}		50	X		Ы	N		Sa
	(10	7		3	3		1
			1	↑		7	2		
potassium permanganate	{KMnO ₄ }		10	♠			-		
silicon oil			100	^		↑	1		Research
soap solution			1	♠		↑	1		ea
sodium acetate	$\{C_2H_3NaO_2\}$		10	1		^	7		es
sodium carbonate	{Na ₂ CO ₃ }	soda ash	20	·		^	↑		
sodium chloride	{NaCl}	common salt	10	^		^	1		
sodium disulfite	{Na ₂ S ₂ O ₅ }		10	^		^	7		<u>o</u>
sodium hydrogensulfate	{NaHSO ₄ }		10	1		1	7		pt
sodium hydroxide	{NaOH}	caustic soda	50	ĸ		И	к		Construction
			10	я		ы	ы		SUC
			1	♠		7	N		
sodium hypochlorite	{NaOCI}		10	^		1	1		
sulfuric acid	$\{H_2SO_4\}$		95	R		N	ĸ		
	(<u>2</u> 7)		30	♠		^	↑		Sheets
			5			Т ↑	т •		l j
tetrachloroethylene	{C ₂ Cl ₄ }	tetrachloroethene, perchloroethylene	100	↑ ↑		T T	Т		あ
tetrahydrofurane	{C ₄ H ₈ O}	oxolane	100	7					
toluene	{C ₇ H ₈ }		100	^					
transformer oils	(0)		100			1			s <u>v</u> s
trichloroethylene	{C ₂ HCl ₃ }	trichloroethene	100	1 1		Т	1		Slideways coatinds
turpentine	(02.10.3)		100	↔					ati
turpentine substitutes			100	•					i∺ S
vaseline	{C ₂₂ H ₄₆ / C ₂₃ H ₄₈ }		100	<u>↑</u>		↑	↑		
vegetable oils	× 22 40 · 723 · 40J		100	<u>↑</u>		T	1		
vinegar			100	<u>т</u> 7		<u>т</u> 7	T X		ر س م
- 3-			10	^		7	ĸ		l,⊑, P
water	{H ₂ O}		100	<u>т</u>		<i>″</i>	1		Sliding frictions
xylene	{C ₈ H ₁₀ }	dimethylbenzene	100	^		1			lo E

Table 2

Conditions of Price list Composite Sliding
 Sale & supply

4.7. Physiological compatibility of ZEDEX 100 A / K / MT

ZEDEX 100

Range

Research

Construction

Sheets

Slideways coatings

Sliding

Composite

Price list

Conditions of le & supply

sal

30

Thanks to in-depth test we are able to confirm, that products, which had been made from ZX 100 on normal processing conditions, meet the requirements in regard to the composition and the content of extractable components, such as contained in:

- the recommendations by the Bundesgesundheits amt" (BGA) of the GDR, (recommendation XVII), (as at 01.08.1982, without restriction, including baking, roasting and grilling, amendmenst until 15.04.1951.

- the EEC - suitability in regard to food for the EC-countries 90/128, 89/109, 85/572, 572, 82/711 and the regulation III/3141/89-EN (Rev.5) dated 01.08.1991.

- the decree dated 10.01.1979 with amendments until 29.08.1991 for the execution of article 2 and 5 of the Dutch resolution "Verpakkingen- und Lebensmittelbeschluß" (law of goods), section A, chapter 1, paragraph 13.

For applications exceeding 100°C, including baking, roasting and grilling.

- the Belgian legislation (royal edict dated 25.08.1976 with amendments until 06.11.1987). For applications up to 100°C, including baking, roasting and grilling without restriction.

- the specifications by the french "Service de la Repression des Fraudes et Controle de la Qualite" (SRFCQ), Jounaux Officiels brochure no. 1227 dated 01.04.1990 of France, amendments until 11.04.1990. For applications exceeding 100°C, including baking, roasting and grilling without restriction (apart from the general guideline, that the employment of plastic films is not permitted for baking and roasting in a stove).

- the Italian legislation, Decreto Ministeriale dated 21.03.1973 with amendments until 18.01.1991. For applications briefly exceeding 100°C, including baking, roasting and grilling (sterilisation).

- the regulations by the "Food and Drug Administration" (FDA) of the U.SA., paragraph 21. section 170-199, dated 01.04.1991, including baking, roasting and grilling without restrictions. (Please pay attention to the general exception regarding beverages of an alcohol content exceeding 50 percent by volume).